New Super-Enzyme Eats Plastic Bottles 6 Times Faster than Regular Enzyme

by on September 29, 2020 · 0 comments

in Environment

By Damian Carrington / The Guardian / Sept. 28, 2020

A super-enzyme that degrades plastic bottles six times faster than before has been created by scientists and could be used for recycling within a year or two.

The super-enzyme, derived from bacteria that naturally evolved the ability to eat plastic, enables the full recycling of the bottles. Scientists believe combining it with enzymes that break down cotton could also allow mixed-fabric clothing to be recycled. Today, millions of tonnes of such clothing is either dumped in landfill or incinerated.

Plastic pollution has contaminated the whole planet, from the Arctic to the deepest oceans, and people are now known to consume and breathe microplastic particles. It is currently very difficult to break down plastic bottles into their chemical constituents in order to make new ones from old, meaning more new plastic is being created from oil each year.

The super-enzyme was engineered by linking two separate enzymes, both of which were found in the plastic-eating bug discovered at a Japanese waste site in 2016. The researchers revealed an engineered version of the first enzyme in 2018, which started breaking down the plastic in a few days. But the super-enzyme gets to work six times faster.

“When we linked the enzymes, rather unexpectedly, we got a dramatic increase in activity,“ said Prof John McGeehan, at the University of Portsmouth, UK. “This is a trajectory towards trying to make faster enzymes that are more industrially relevant. But it’s also one of those stories about learning from nature, and then bringing it into the lab.”

French company Carbios revealed a different enzyme in April, originally discovered in a compost heap of leaves, that degrades 90% of plastic bottles within 10 hours, but requires heating above 70C.

The new super-enzyme works at room temperature, and McGeehan said combining different approaches could speed progress towards commercial use: “If we can make better, faster enzymes by linking them together and provide them to companies like Carbios, and work in partnership, we could start doing this within the next year or two.”

The 2018 work had determined that the structure of one enzyme, called PETase, can attack the hard, crystalline surface of plastic bottles. They found, by accident, that one mutant version worked 20% faster. The new study analysed a second enzyme also found in the Japanese bacteria that doubles the speed of the breakdown of the chemical groups liberated by the first enzyme.

For the balance of this article, please go here.

{ 0 comments… add one now }

Leave a Comment

Older Article:

Newer Article: